ViPrimePLUS 2019-nCoV RT-qPCR Kit Quantitative assay for real-time RT-PCR detection of

2019-nCoV

Product Code: QM5081 Pack Size: 150 reactions

INTENDED USE

The ViPrimePLUS 2019-nCoV RT-qPCR Kit is a Taqman probe-based real-time PCR assay for the detection of 2019-nCoV genome in clinical samples (e.g. nasopharyngeal and oropharyngeal swab, bronchoalveolar lavage, tracheal aspirate, nasopharyngeal aspirate or nasal wash, sputum and serum.). This assay is intended for research use only.

INTRODUCTION

2019-nCoV is a novel strain of Coronavirus that caused an outbreak of pneumonia in Wuhan City (China) on the end of December 2019. This virus belongs to the same family of Severe Acute Respiratory Syndrome (SARS) and Middle Eastern Respiratory Syndrome (MERS) viruses. This positive-sense, single-stranded RNA virus is thought to be of zoonotic origin and can be transmitted from human to human. Individuals infected with this virus would show symptoms like fever, dry cough, fatigue, pneumonia, shortness of breath and respiratory distress. Recently, there were cases reported to have cause renal failure, pneumonia and death. In additions, patients with impaired immune systems are the most seriously affected by 2019-nCoV; even some of the healthy individuals have required intensive care once infected.

PRINCIPLE OF TEST

The kit contains primers and Taqman® probe that target the 2019-nCoV genomes. In this one-step real-time RT-PCR, reverse transcription of this viral RNA is combined with the qPCR step in a single tube reaction. This closed-tube assay reduces the chances of contamination and improves the sensitivity of the test.

Based on the Taqman® probe detection principle, the 5'-reporter dye and 3'-quencher dual-labelled oligonucleotide (Taqman® probe) hybridizes on a specific region within the amplified fragment. During amplification, the probe is cleaved and the reporter dye (fluorophore) is released. The fluorescent signal intensity detected is proportional to the number of amplicons. The Ct value (the cycle at which the rise of fluorescent signal from the baseline is first significant) is used for quantification purposes. Target pathogen amplification is detected using FAM channel.

The kit provides the Internal Extraction Control (IEC) as inhibition control. During nucleic acid extraction protocol, IEC RNA template is added in the lysis stage. An IEC specific primers and probe labelled with a different dye is provided to be run in the same reaction with the pathogen-specific primers and probe mix. The IEC amplicons are detected via VIC/HEX channel at Ct value 28±3 depending on the sample dilution.

A positive control with known copy number is provided for standard curve construction and absolute quantification. It can also be used at a single dilution for qualitative analysis control of the experimental set-up. Extra care must be taken to avoid cross-contamination.

QUALITY CONTROL

Each lot of ViPrimePLUS 2019-nCoV RT-PCR Kit has been tested against predetermined specifications to ensure consistent product quality under ISO 9001:2015 – certified Quality Management System.

SENSITIVITY & SPECIFICITY

The detection limit is tested to 100 copies per reaction. The primers and probe are 100% specific.

STORAGE & STABILITY

Store at -20°C and avoid light exposure. Stable at -20°C up to the expiry date stated. Keep in aliquot to reduce freeze-thaw cycles.

LIMITATION OF TEST

For research use only. Not recommended for diagnosis of disease in humans or animals.

Result is dependent on the yield and quality of the nucleic acids extracted from the method of extraction. Thus, it is important to do spectrophotometric and gel analysis on the extracted samples.

KIT COMPONENTS

2019-nCoV Primers and Probe Mix (2019-nCoV PPM)
Positive Control
Internal Extraction Control Primers and Probe Mix (IEC PPM)
Internal Extraction Control (IEC RNA)
Nuclease Free Water
Template Preparation Buffer

Amber Capped Tube Pink Capped Tube Amber Capped Tube Blue Capped Tube White Capped Tube Yellow Capped Tube

SAMPLE MATERIAL

The kit is suitable for RNA extracted by most commercial kits, provided the purity, concentration and integrity are within acceptable range. IEC is provided to eliminate doubts of PCR inhibition. Suitable sample types are nasopharyngeal and oropharyngeal swab, bronchoalveolar lavage, tracheal aspirate, nasopharyngeal aspirate or nasal wash, sputum and serum.

Reconstitution of reagents

*Pulse-spin each tube prior to opening.

Components	Volume	Reagents
2019-nCoV PPM (Amber)	165µl	Nuclease Free Water
IEC PPM (Amber)	165µl	Nuclease Free Water
IEC RNA	600µl	Nuclease Free Water
Positive Control Template	500µl	Template Preparation Buffer

RNA extraction

Add 4µl of IEC RNA into each sample suspended in the lysis/extraction buffer.

*DO NOT add IEC directly into unprocessed biological sample.

Real-time PCR reaction set-up

Recommended real-time PCR reaction set-up:

Reagents	1 reaction (µI)
2x RT-PCR Mastermix	10
2019-nCoV PPM	1
IEC PPM (not required when	1
preparing standards' reaction mix)	
Nuclease-free water	3
Sample RNA	5

^{*}Suggested sample concentration 5-20ng/µl.

Negative control

Set aside one tube/well as negative control where 5µl of nuclease-free water is used as the template. This is also known as no template control.

Positive control

For qualitative analysis, set aside one tube as positive control where 5µl of the positive control is used as the template.

Positive control (optional)

For quantitative analysis only, prepare 6 serially diluted positive control templates for standard curve construction.

- a) Pipette 90µl of Template Preparation Buffer into 5 clean microtubes and label 2-6 accordingly.
- b) Pipette 10µl of Positive Control into tube 2.
- c) Vortex thoroughly and spin down.
- d) Change pipette tip and pipette 10µl from tube 2 to tube 3. Vortex and spin down.
- e) Repeat steps d) to complete the dilution series.
- f) Pipette 5µl of standard template into each tube/well accordingly.

Standards	Copy number/µl
Tube 1 Positive Control	2 x 10 ⁵
Tube 2	2 x 10 ⁴
Tube 3	2 x 10 ³
Tube 4	2 x 10 ²
Tube 5	20
Tube 6	2

Set the thermal cycler parameters as follows:

Step	Time	Temp	Cycles	Scan
Reverse transcription	10mins	55°C		
Enzyme activation	2mins	95°C		
Denaturation	10secs	95°C	50	
Anneal/Elongation	1min	60°C		√*

^{*}FAM or VIC/HEX

^{*}Adjust nuclease-free water to make up the final reaction volume of 20µl.

^{*}Prepare an extra reaction to accommodate for pipetting error.

INTERPRETATION OF RESULTS

Pathogen specific amplification signal is detected via FAM channel, while IEC amplification is detected via VIC/HEX channel. The signal is positive if the amplification curve crosses the threshold line. The result is relevant provided both positive and negative controls give valid results.

Summary of interpretation:

Target	IEC	Negative Control	Positive Control	Interpretation
+	+	-	+	Valid, positive
+	-	-	+	Valid, positive
-	+	-	+	Valid, negative
-	-	-	-	Invalid
+	+	+	+	Invalid

^{*}Positive control template is expected to amplify between Ct 16 and 23. Failure to satisfy this quality control criterion is a strong indication that the experiment has been compromised.

Internal Extraction Control

When used accordingly and assuming 100% extraction efficiency, a Ct value of 28±3 is within normal range. A high 2019-nCoV genome copy amplification may out compete the IEC amplification. Thus, the latter may not produce an amplification signal. The positive result is still valid in this case.

TROUBLESHOOTING

Problem	Possibility	Suggestion
Negative control / No template control gives positive result	Carry over contamination	Change nuclease-free water. Use fresh aliquots of reagents. Use filtered tips. Load positive control last.
No signal detected from positive control	Incorrect programming of instrument	Check program.
	Reagents expired	Check the expiry date of reagents before repeat.
	Storage condition not complying with instructions	Check storage condition properly and store at correct storage condition to avoid the degradation of reagents.
	Pipetting error	Pipette the correct volume of reagents to reconstitute the components of kit and mix well.
Internal extraction control does not	Inhibitors in the samples extracted	Repeat the extraction.
give a signal in apparently negative samples	Low recovery of RNA extracted	Repeat the extraction by enlarge the sample size.
	IEC added directly into unprocessed biological sample – lead to degradation and loss of signal	Add IEC into each sample suspended in the lysis/extraction buffer.

DEVIATION OF MASTERMIX FORMULATION

Manufacturers use varying methods to calibrate *a* real-time PCR reaction. For this reason, we provide several Mastermix formulations for those platforms.

Master Mix	Compatible Hardware
Original	Analytik Jena qTower series, biorad iCycler all series, BioRad CFX96 & CFX384, Cepheid SmartCycler®, Eppendorf Mastercycler series, Fluidigm BioMark™, Illumina Eco, MJ Chromo4, Opticon, PCRMax Eco™, Roche lightcycler® series, Qiagen RotorGene, Thermo PikoReal™
Low Rox (-LR)	Agilent / Stratagene Mx3000, Mx3005P, Mx4000, Mx4000R, Applied Biosystems 7500 and 7500 FAST platform, QuantStudio™, ViiA7.
Rox (-R)	Applied Biosystems 7000, 7300, 7700, 7900 and 7900HT FAST platforms, OpenArray, PRISM 7000, 7700, 7900, GeneAmp® 5700, StepOne™, StepOne™ PLUS

WARRANTY & LIMITED LIABILITY

The performance characteristics stated were obtained using the assay procedure in this insert. Failure to comply with the instructions may derive inaccurate results. In such event, manufacturer disclaims all warranty expressed, implied or statutory including the implied warranty of merchantability and the fitness of use.

The manufacturer will not be liable for any damage caused by misuse, improper handling and storage; non-compliance with precautions and procedures, and damages caused by events occurring after the product is released.